6 research outputs found

    Speech Emotion Recognition System using Librosa for Better Customer Experience

    Get PDF
    Call center employees usually depend on instinct to judge a potential customer and how to pitch to them. In this paper, we pitch a more effective way for call center employees to generate more leads and engagement to generate higher revenue by analyzing the speech of the target customer by using machine learning practices and depending on data to make data-driven decisions rather than intuition. Speech Emotion Recognition otherwise known as SER is the demonstration of aspiring to perceive human inclination along with the behavior. Normally voice reflects basic feeling through tone and pitch. According to human behavior, many creatures other than human beings are also synced themselves. In this paper, we have used a python-based library named Librosa for examining music tones and sounds or speeches. In this regard, various libraries are being assembled to build a detection model utilizing an MLP (Multilayer Perceptron) classifier. The classifier will train to perceive feeling from multiple sound records. The whole implementation will be based on an existing Kaggle dataset for speech recognition. The training set will be treated to train the perceptron whereas the test set will showcase the accuracy of the model

    Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro

    Get PDF
    Enteric methane arising due to fermentation of feeds in the rumen contributes substantially to the greenhouse gas emissions. Thus, like evaluation of chemical composition and nutritive values of feeds, methane production potential of each feed should be determined. This experiment was conducted to evaluate several feeds for methane production potential and rumen fermentation using in vitro gas production technique so that low methane producing feeds could be utilized to feed ruminants. Protein- and energy-rich concentrates (n=11), cereal and grass forages (n=11), and different straws and shrubs (n=12), which are commonly fed to ruminants in India, were collected from a number of locations. Gas production kinetics, methane production, degradability and rumen fermentation greatly varied (p<0.01) among feeds depending upon the chemical composition. Methane production (mL/g of degraded organic matter) was lower (p<0.01) for concentrate than forages, and straws and shrubs. Among shrubs and straws, methane production was lower (p<0.01) for shrubs than straws. Methane production was correlated (p<0.05) with concentrations of crude protein (CP), ether extract and non-fibrous carbohydrate (NFC) negatively, and with neutral detergent (NDF) and acid detergent fiber (ADF) positively. Potential gas production was negatively correlated (p=0.04) with ADF, but positively (p<0.01) with NFC content. Rate of gas production and ammonia concentration were influenced by CP content positively (p<0.05), but by NDF and ADF negatively (p<0.05). Total volatile fatty acid concentration and organic matter degradability were correlated (p<0.05) positively with CP and NFC content, but negatively with NDF and ADF content. The results suggest that incorporation of concentrates and shrubs replacing straws and forages in the diets of ruminants may decrease methane production

    Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro

    No full text
    Enteric methane arising due to fermentation of feeds in the rumen contributes substantially to the greenhouse gas emissions. Thus, like evaluation of chemical composition and nutritive values of feeds, methane production potential of each feed should be determined. This experiment was conducted to evaluate several feeds for methane production potential and rumen fermentation using in vitro gas production technique so that low methane producing feeds could be utilized to feed ruminants. Protein- and energy-rich concentrates (n=11), cereal and grass forages (n=11), and different straws and shrubs (n=12), which are commonly fed to ruminants in India, were collected from a number of locations. Gas production kinetics, methane production, degradability and rumen fermentation greatly varied (p<0.01) among feeds depending upon the chemical composition. Methane production (mL/g of degraded organic matter) was lower (p<0.01) for concentrate than forages, and straws and shrubs. Among shrubs and straws, methane production was lower (p<0.01) for shrubs than straws. Methane production was correlated (p<0.05) with concentrations of crude protein (CP), ether extract and non-fibrous carbohydrate (NFC) negatively, and with neutral detergent (NDF) and acid detergent fiber (ADF) positively. Potential gas production was negatively correlated (p=0.04) with ADF, but positively (p<0.01) with NFC content. Rate of gas production and ammonia concentration were influenced by CP content positively (p<0.05), but by NDF and ADF negatively (p<0.05). Total volatile fatty acid concentration and organic matter degradability were correlated (p<0.05) positively with CP and NFC content, but negatively with NDF and ADF content. The results suggest that incorporation of concentrates and shrubs replacing straws and forages in the diets of ruminants may decrease methane production

    Photosensitivity and charge injection dynamics of pentacene based thin-film transistors: influence of substrate temperature

    No full text
    In this work, we have performed an in-depth analysis to investigate the effect of substrate temperature on the molecular packing arrangement and energy levels of pentacene films. We have also explored their influence on the charge injection mechanism and photosensing behaviour of pentacene-based organic field-effect transistors (OFETs). In this study, we find the contact resistance and photosensitivity of the devices to be severely influenced by the active layer processing condition owing to the aforementioned structural and energy level modifications. Contact resistance of the devices at metal-semiconductor interfaces was observed to be reduced significantly upon increase in the substrate temperature; however, above a certain temperature, formation of pentacene thin-films was severely affected and no transistor characteristics were obtained afterwards. Detailed experimental analysis and theoretical investigations revealed that the processing temperature could strongly influence the grain structure and unit cell volume of the pentacene molecules, which consequently enhanced the carrier injection across the interface through a control over carrier mobility and the distribution of electronic states in the proximity of Fermi energy. Furthermore, our study demonstrates the role of substrate temperature in effectively enhancing the photosensitivity of the transistors. This report thus represents a step forward towards understanding a correlation between the processing temperature and the dynamics of charge injection in pentacene based organic transistors. The results also illustrate the viability of using proper substrate temperature to achieve an efficient photosensitivity from OFET devices

    Near infra-red polymeric nanoparticle based optical imaging in Cancer diagnosis

    No full text
    Cancer disease is a foremost health concern and top basis of death in comparison with many diseases including cardiovascular disorders. During initial diagnosis (usually late diagnosis), a majority of cancer patients suffer from metastatic and advanced cancer stages which resulted in limited therapeutic modalities based interventions and effectiveness. Though considerable advancement has been made in combating the disease, continuous and intense efforts are ongoing for early diagnosis and development of therapies. Generally applied treatment options for cancer are surgery, chemotherapy and radiotherapy, which are restricted by failure to early diagnose, insufficient on-targeted drug delivery, systemic toxicity, and lack of real-time monitoring of therapeutic responses in cancer. Noninvasive imaging or minimally invasive imaging methodology is valuable in clinical diagnostic settings. Specifically, noninvasive optical imaging integrated with polymeric nanomaterial have been extensively investigated in the field of cancer diagnostics and therapy. Currently, optical imaging methods go together with polymer-based fluorescent nanoparticles in accomplishing the molecular level detection of tumor boundaries. NIR probe tagged polymeric nanoparticles have potential to provide an advantage in the early cancer detection, therapeutic monitoring and image guided surgery procedures. This article review the recent progress in state-of-the-art NIRF polymeric nanoparticles used for optical imaging particularly on cancer diagnosis
    corecore